Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.

Identifieur interne : 000F66 ( Main/Exploration ); précédent : 000F65; suivant : 000F67

Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.

Auteurs : Xiao-Ren Chen [République populaire de Chine] ; Bo-Yue Zhang ; Yu-Ping Xing ; Qi-Yuan Li ; Yan-Peng Li ; Yun-Hui Tong ; Jing-You Xu

Source :

RBID : pubmed:25406848

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq.

RESULTS

We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts.

CONCLUSIONS

This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome sequence, transcriptome data is important for infection-related gene discovery in P. cactorum, as demonstrated here for the effector genes. The first look at the transcriptome and effector arsenal of P. cactorum provides valuable data to elucidate the pathogenicity basis of this broad-host-range pathogen.


DOI: 10.1186/1471-2164-15-980
PubMed: 25406848
PubMed Central: PMC4289400


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.</title>
<author>
<name sortKey="Chen, Xiao Ren" sort="Chen, Xiao Ren" uniqKey="Chen X" first="Xiao-Ren" last="Chen">Xiao-Ren Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China. xrchen@yzu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009</wicri:regionArea>
<wicri:noRegion>Yangzhou 225009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Bo Yue" sort="Zhang, Bo Yue" uniqKey="Zhang B" first="Bo-Yue" last="Zhang">Bo-Yue Zhang</name>
</author>
<author>
<name sortKey="Xing, Yu Ping" sort="Xing, Yu Ping" uniqKey="Xing Y" first="Yu-Ping" last="Xing">Yu-Ping Xing</name>
</author>
<author>
<name sortKey="Li, Qi Yuan" sort="Li, Qi Yuan" uniqKey="Li Q" first="Qi-Yuan" last="Li">Qi-Yuan Li</name>
</author>
<author>
<name sortKey="Li, Yan Peng" sort="Li, Yan Peng" uniqKey="Li Y" first="Yan-Peng" last="Li">Yan-Peng Li</name>
</author>
<author>
<name sortKey="Tong, Yun Hui" sort="Tong, Yun Hui" uniqKey="Tong Y" first="Yun-Hui" last="Tong">Yun-Hui Tong</name>
</author>
<author>
<name sortKey="Xu, Jing You" sort="Xu, Jing You" uniqKey="Xu J" first="Jing-You" last="Xu">Jing-You Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25406848</idno>
<idno type="pmid">25406848</idno>
<idno type="doi">10.1186/1471-2164-15-980</idno>
<idno type="pmc">PMC4289400</idno>
<idno type="wicri:Area/Main/Corpus">000F39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F39</idno>
<idno type="wicri:Area/Main/Curation">000F39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F39</idno>
<idno type="wicri:Area/Main/Exploration">000F39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.</title>
<author>
<name sortKey="Chen, Xiao Ren" sort="Chen, Xiao Ren" uniqKey="Chen X" first="Xiao-Ren" last="Chen">Xiao-Ren Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China. xrchen@yzu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009</wicri:regionArea>
<wicri:noRegion>Yangzhou 225009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Bo Yue" sort="Zhang, Bo Yue" uniqKey="Zhang B" first="Bo-Yue" last="Zhang">Bo-Yue Zhang</name>
</author>
<author>
<name sortKey="Xing, Yu Ping" sort="Xing, Yu Ping" uniqKey="Xing Y" first="Yu-Ping" last="Xing">Yu-Ping Xing</name>
</author>
<author>
<name sortKey="Li, Qi Yuan" sort="Li, Qi Yuan" uniqKey="Li Q" first="Qi-Yuan" last="Li">Qi-Yuan Li</name>
</author>
<author>
<name sortKey="Li, Yan Peng" sort="Li, Yan Peng" uniqKey="Li Y" first="Yan-Peng" last="Li">Yan-Peng Li</name>
</author>
<author>
<name sortKey="Tong, Yun Hui" sort="Tong, Yun Hui" uniqKey="Tong Y" first="Yun-Hui" last="Tong">Yun-Hui Tong</name>
</author>
<author>
<name sortKey="Xu, Jing You" sort="Xu, Jing You" uniqKey="Xu J" first="Jing-You" last="Xu">Jing-You Xu</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Life Cycle Stages (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phytophthora (genetics)</term>
<term>Phytophthora (growth & development)</term>
<term>Plant Diseases (parasitology)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Protein Interaction Domains and Motifs (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Allèles (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Motifs et domaines d'intéraction protéique (MeSH)</term>
<term>Phytophthora (croissance et développement)</term>
<term>Phytophthora (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Étapes du cycle de vie (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Life Cycle Stages</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phytophthora</term>
<term>Étapes du cycle de vie</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Computational Biology</term>
<term>Gene Expression</term>
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Annotation</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phenotype</term>
<term>Polymorphism, Genetic</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Reproducibility of Results</term>
<term>Sequence Alignment</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Allèles</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Annotation de séquence moléculaire</term>
<term>Biologie informatique</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Famille multigénique</term>
<term>Motifs d'acides aminés</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Phénotype</term>
<term>Polymorphisme génétique</term>
<term>Reproductibilité des résultats</term>
<term>Séquence d'acides aminés</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome sequence, transcriptome data is important for infection-related gene discovery in P. cactorum, as demonstrated here for the effector genes. The first look at the transcriptome and effector arsenal of P. cactorum provides valuable data to elucidate the pathogenicity basis of this broad-host-range pathogen.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25406848</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.</ArticleTitle>
<Pagination>
<MedlinePgn>980</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-980</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome sequence, transcriptome data is important for infection-related gene discovery in P. cactorum, as demonstrated here for the effector genes. The first look at the transcriptome and effector arsenal of P. cactorum provides valuable data to elucidate the pathogenicity basis of this broad-host-range pathogen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiao-Ren</ForeName>
<Initials>XR</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China. xrchen@yzu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bo-Yue</ForeName>
<Initials>BY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xing</LastName>
<ForeName>Yu-Ping</ForeName>
<Initials>YP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qi-Yuan</ForeName>
<Initials>QY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yan-Peng</ForeName>
<Initials>YP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Yun-Hui</ForeName>
<Initials>YH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Jing-You</ForeName>
<Initials>JY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008018" MajorTopicYN="N">Life Cycle Stages</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25406848</ArticleId>
<ArticleId IdType="pii">1471-2164-15-980</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-980</ArticleId>
<ArticleId IdType="pmc">PMC4289400</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2013 Jun;9(6):e1003272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2928-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(4):e5066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Jun;13(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:498</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(8):e1002875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22927814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2011 Apr;33(4):715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May;62(3):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Aug;7(8):1501-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(1):247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Oct;25(10):1350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22712506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2003 Jul;60(7):1470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12943233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2012 Dec;15(6):685-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23177095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):795-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Jul;9(7):e1001094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Dec;154(Pt 12):3743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19047742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:437-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17489691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 May 1;2(3):125-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Sep;13(7):719-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Jan;14(1):8-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1993 Nov;34(5):1261-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Nov;7(11):e1002353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22102810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 15;276(24):21578-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11262411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 May;24(5):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jul 1;5(4):317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Feb;12(2):e1001801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Dec;24(12):1530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Nov 1;4(6):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):958-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):969-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Aug;67(16):1800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013;14(6):R63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Feb;13(2):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2011 Dec;20(12):2047-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22545137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):490-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(9):e74588</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):781-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Mar;45(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Apr 4;13(4):1848-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24588563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Aug;18(8):1786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19554629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:619832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 14;286(41):35834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Dec;11(12):2291-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jul;24(7):827-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21361788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 21;4:387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Apr;269(2):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5556</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19440541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2011 Oct;57(5):297-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 22;19(5):651-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):433-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):896-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22397404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Li, Qi Yuan" sort="Li, Qi Yuan" uniqKey="Li Q" first="Qi-Yuan" last="Li">Qi-Yuan Li</name>
<name sortKey="Li, Yan Peng" sort="Li, Yan Peng" uniqKey="Li Y" first="Yan-Peng" last="Li">Yan-Peng Li</name>
<name sortKey="Tong, Yun Hui" sort="Tong, Yun Hui" uniqKey="Tong Y" first="Yun-Hui" last="Tong">Yun-Hui Tong</name>
<name sortKey="Xing, Yu Ping" sort="Xing, Yu Ping" uniqKey="Xing Y" first="Yu-Ping" last="Xing">Yu-Ping Xing</name>
<name sortKey="Xu, Jing You" sort="Xu, Jing You" uniqKey="Xu J" first="Jing-You" last="Xu">Jing-You Xu</name>
<name sortKey="Zhang, Bo Yue" sort="Zhang, Bo Yue" uniqKey="Zhang B" first="Bo-Yue" last="Zhang">Bo-Yue Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Xiao Ren" sort="Chen, Xiao Ren" uniqKey="Chen X" first="Xiao-Ren" last="Chen">Xiao-Ren Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25406848
   |texte=   Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25406848" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024